

PROGRAMM - Stand 1.10.2013!

Mittwoch, 4. Dezember 2013

09:00 - 10:00	Begrüßung und Einleitung			
10:00 - 10:30 Kaffeepause				
10:30 - 12:30	Session I: Substrate	Session II: Klein(st)biogasanlagen	Session III-1: BiomethaneRegions (englisch)	Session IV: FABbiogas
12:30 - 14:00 Mittagspause				
14:00 - 15:30	Session V: Biomethan	Session VI: biogene Abfälle	Session III-2: BiomethaneRegions (englisch)	Session VII: Zusatzprodukte - Wärme/Gärprodukte
15:30 - 16:00 Kaffeepause				
16:00 - 18:00	Abschluß Plenum			
18:00 oE	Abendveranstaltung			

Donnerstag, 5. Dezember 2013

09:00 - 10:45	Arbeitskreis Biogas: ausgewählte Themen			
10:45 - 11:15 Kaffeepause				
11:15 - 12:30	Jahresabschluß AK Biogas			

PROGRAMM - 4. Dezember 2013

Begrüßung und Einleitung:

Hubert Seiringer, Norbert Hummel, Franz Kirchmeyr (ARGE Kompost & Biogas Österreich)

KommR Sonja Swazl (Präsidentin der Wirtschaftskammer Niederösterreich)

Abg.z.NR Hermann Schultes (Präsident der Landwirtschaftskammer Niederösterreich)

N.N. angefragt (Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft)

Alexandra Pehlken, Universität Oldenburg: Regionale Energielösungen erfassen und bewerten

Session I: Substrate

Ulrike Schimpf, Humbold Universität zu Berlin: Mehr Gas durch Pilze

Josef Höckner, BioG Industrie-Anlagenbau GmbH: Erfahrungen bei Vergärung von Maisstroh

Thomas Reiter, Pöttinger: Effiziente und verschmutzungsfreie Erntelogistik

Michael Wachendorf, Univ. Kassel: Ligninhaltige Substrate mit dem IFBB Verfahren verwerten

Jürgen Beck, F10 Forschungszentrum: Upflow Digester

Session II: Klein(st)biogasanlagen

Hermann Wenger-Oehn, Industrieconsult: Entwicklung einer Kleinbiogasanlage

Franz Schweizer, Hörmann Interstall GmbH&CoKG: Konzepte für Erweiterungen bei bestehenden Anlagen und Kleinstbiogasanlagenbau

Bernhard Mayr, EnviCare: Besonderheiten im Genehmigungsverfahren bei kleinen Biogasanlagen

Stephan Hinterberger, Müller Abfallprojekte: Umsetzung einer Hofbiogasanlage mit 7 kWel

Wolfgang Baaske, Studia Schlierbach: Gendergerechter Zugang zu Hofbiogasanlagen

Session III: Bio-Methane Regions (in englischer Sprache) www.bio-methaneregions.eu

Attila Kovacs (EBA): The Evolution of the European biomethane legislation and market

Andy Bull (SWEA): The Genesis of Biomethane Regions and some of the key outputs from the project

ts **BIO-METHANE** REGIONS

Michael Harasek (TU-Wien): Merits of the key current technologies for biogas to bio-methane gas upgrading Leif Raun (DKCfA), Mauritz Quaak (Arcy Fram), Simone Hurschka (AILE), Mathieu Lefebvre (Air Liquide): Experience of biomethane grid injection

Hannele Johansson (Energiekontor Sydost): *Bio-methane in transport with experiences from the Municipality of Växjö*

Sandra Esteves (University of South Wales): IImportance of process monitoring in optimising biogas production

Stefano Proietti (Isis): *The BIOMASTER project – Biomethane for Transport: challenges and results* WORKSHOP

Session IV: FABbiogas www.fabbiogas.eu

Günther Bochmann, BOKU Wien: Biogas in der Lebensmittel- und Getränkeindustrie

Gunther Pesta, ATRES: Praxisbeispiele aus Deutschland - Vergärung organischer

Reststoffe der Lebensmittelindustrie

Marcel Blum, AAT: ??steht noch nicht fest??

Marcus Ortner, BOKU Wien: Energieautarke Lebensmittelindustrie -- Realisierung eines innovativen Abfall-

und Energiekonzepts

Christoph Walla, KPC: Fördermöglichkeiten im Biogassektor

Seite 1

Besonderheiten im Genehmigungsverfahren bei kleinen Biogasanlagen

DI Dr. Bernhard Mayr

EnviCare® Engineering GmbH

Ingenieurbüro für Verfahrenstechnik

A-8042 Graz, Eisteichgasse 20/9. Stock/Tür 36

10. Juni 2014 File: 2013_10_03_Biogas13.pptx

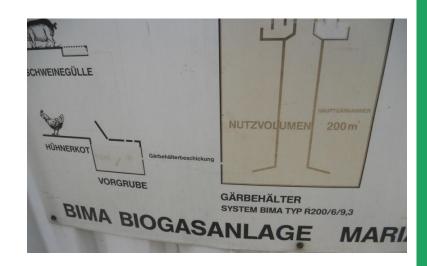
Inhalt

- Einleitung
- Projektvorstellung
- Genehmigungsverfahren
- Vergabeverfahren
- Investitionskosten
- Wirtschaftlichkeit
- Resümee

Biogasanlage Maria Lankowitz

Kurzvorstellung EnviCare®

- Gegründet 1996
- Ingenieurberatung für
 - Industrie
 - Energie
 - Abfallwirtschaft
 - Verwaltung
- Sachverständiger für
 - Abwasserentsorgung
 - Abfallwirtschaft
 - Deponiewesen, Altlastensanierung
 - Chemische Verfahrenstechnik
- Slowenische Ingenieurbefugnis



10 Juni 2014

Einleitung

- ▶ Eigentümer und Betreiberin:
 - Justiz/Republik Österreich
 - Abwicklung: BIG
- Pionieranlage erbaut 1993 System BIMA Pfefferkorn mit hydraulischem Mischer
 - Gülle als Hauptsubstrat
 - Speisereste der steirischen Justizanstalten
 - Gasverwertung nur für Heizzwecke
- Behördliche Stilllegung 2009
- Machbarkeitsstudie 2010
- Planungsauftrag April 2011

Projektvorstellung

- Nutzung der vorhandenen Anlagenteile
 - Behälter für Fermenter und Güllelager
 - Speiseresteverarbeitungsanlage mit Hygienisierung
 - Gaskessel
 - Räume für Einbau des Blockheizkraftwerkes
- Neue Anlagenteile
 - Fahrsilo
 - Blockheizkraftwerk
 - Vorgrube
 - Biofilter
 - Pumpen, Rührwerke, Heizung, Elektrotechnik, Steuerung

- Nutzung des bestehenden Bescheids und Anpassung an den S.d.T.?
 - Verfahrensökonomie: Anzeige nach §37 (4) AWG angestrebt
 - Änderungen beschreiben,
 - keine öffentliche Verhandlung Überprüfung durch ASVs,
 - Änderungen werden zur Kenntnis genommen
 - Sehr geringer Aufwand und sehr rasch!
- ▶ Entscheidung der Behörde:
 - Anzeige wegen gravierender Änderungen des Standes der Technik (ASV RL 2012 mit 157 Seiten) unmöglich!
 - => "vereinfachtes" Verfahren nach §37 (3) AWG
 - in der Praxis nur eine Auswirkung auf die zu ladenden Parteien und den Ablauf
 - Ansonsten keine relevanten "Vereinfachungen" in der Projektsdarstellung und -prüfung!

- Welche Erleichterungen gibt es bei kleinen Anlagen?
 - Keine!
 - Generell kein Unterschied zwischen Groß- und Kleinanlagen!
- Wie viele ASVs sind involviert?
 - 14
- Wie hoch ist der Aufwand?
 - Enorm
 - Insgesamt waren etwa 250 h Projektbearbeitung erforderlich
 - 5 Vorbesprechungen mit Jurist und ASVs
 - 2 Verhandlungstermine vor Ort

- Warum so viel Aufwand?
 - Planungsablauf

laut Honorarrichtlinien	Behördliche Anforderung	
Vorplanung – 10 – 20 %	Im Projekt werden Detailplanungs- und	
Entwurfsplanung – 15 – 30 %	zum Teil bereits Ausführungsunterlagen als Beurteilungsgrundlage gefordert.	
Bewilligungsplanung – 3 – 12 % Summe: ca. 45 %	Das Behördenverfahren kann daher frühestens nach erfolgter	
Detailplanung – 20 – 40 %	Detailplanung, besser aber erst nach	
Vorbereitung der Vergabe – 7 – 15 %	der Vergabe durchgeführt werden!	
Mitwirken bei der Vergabe – 5 – 10 % Summe Detail + Vergabe: ca. 55 %	Bei der Einreichung muss mind. 80 %, besser aber schon 100 % der Planungsleistung erbracht und bezahlt sein! => hohes Kostenrisiko für AG!!!!	

- ▶ Beispiel: Lageänderung des BHKW Raumes
 - Einbau eines kleineres Aggregats mit geringeren Emissionen
 - Aufstellung im gleichen Gebäude, aber in einem anderen Raum
 - Baulich idente Ausführung der Mauern und des Daches
- Wiederum ein "vereinfachtes" Verfahren nach §37 (3)
 - Begründung:
 - Im Zuge der Lageänderung kommt es zu einer Nutzungsänderung in den nunmehr vorgesehenen Räumen...... Bewilligungspflichtig ist insbesondere immer eine höhenwertige Verwendung, etwa eines Lagerraumes als Aufenthaltsraum.
 - Resultat:
 - Projektnachreichung mit detaillierter Beschreibung
 - Vorprüfung der Unterlagen durch ASVs
 - Wieder sämtliche ASVs vor Ort zur Verhandlung

Vergabeverfahren

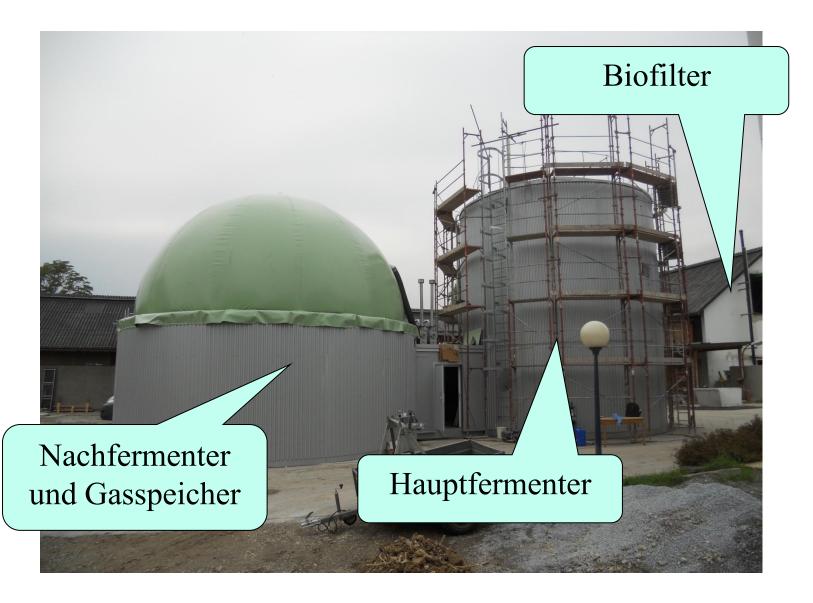
- BIG und Justizanstalt sind öffentliche AG und unterliegen dem Vergaberecht
- Detaillierte Planung und Ausschreibung erforderlich
- Leistungen nur mit Rechnung
- Keine Eigenleistungen möglich
- **>** => teuer

Kosten und Wirtschaftlichkeit

Kapitalkosten: - 55.000,-/a

Betriebskosten: - 30.000,-/a

► Erlös an Strom und Wärme: + 57.000,-/a


Ersparnis an Speiserestentsorgung: + 40.000,-/a

▶ Ergebnis: + 12.000,-/a

Sinnvolle und interessante Beschäftigung

 Gute Ergänzung des Außenbetriebes der Vollzugsanstalt (Flächenbewirtschaftung, Viehhaltung)

Resümee

- Riesenaufwand im Genehmigungsverfahren,
- Zahlreiche ASVs mit hohen Anforderungen,
- Die detaillierte Prüfung steigert aber auch die Qualität des Projektes,
- Schwierige Weiternutzung des Bestands,
- ▶ Keine Erleichterungen für Kleinanlagen

Dennoch ein sinnvolles Projekt, das aber jedenfalls eine wirtschaftliche Einzelfallbeurteilung erfordert.

Danke für ihre Aufmerksamkeit!

DI Dr. Bernhard Mayr

EnviCare® Engineering GmbH

Ingenieurbüro für Verfahrenstechnik

Eisteichgasse 20/36, 8042 Graz, Österreich

T: +43 316 381038 DW 4

F: +43 316 381038 DW 9

M: +43 676 438 10 38

E: mayr@envicare.at

I: http://www.envicare.at

10. Juni 2014 Seite 14